

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 1 of 40

Preliminary Design Document

FSA Portals, Release 1

Students

3/1/2002

Author: Aimee D. Byrd

Last Modified By: Shannon Courtney

Last Updated: 3/1/2002 10:51 AM

Version: 1.1

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 2 of 40

Document Control

Change Record

Date Author Version Change Reference

12/18/01 Aimee Byrd 1.0 Document creation.
1/4/02 Aimee Byrd 1.0 Minor changes after first draft
1/29/02 Aimee Byrd 1.1 Added Struts and minor changes
3/01/02 Shannon Courtney 1.1 Addressed IV&V comments

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 3 of 40

1 INTRODUCTION ... 5
1.1 PURPOSE .. 5
1.2 SCOPE .. 5
1.3 BASIC BUSINESS NEEDS .. 6
1.4 APPLICATION FEATURES & BENEFITS... 7

2 APPLICATION ARCHITECTURE ... 10
2.1 STRUTS .. 10
2.2 BLUEPRINT... 11
2.3 PAGE NAVIGATION/FLOW ... 13
2.4 AUDIENCE & USERS .. 13
2.5 SECURITY ARCHITECTURE .. 14

2.5.1 Purpose.. 14
2.5.2 Password Policy .. 14
2.5.3 Password Privacy.. 14
2.5.4 Username / Password Format & Content ... 15
2.5.5 Password Expiration, History & Temporary Passwords .. 15

2.6 LOGIN, AUTHENTICATION & SESSIONS ... 15
2.6.1 Login.. 15
2.6.2 Authentication ... 16
2.6.3 Session Management ... 16

2.7 MULTI-LANGUAGE .. 16
3 TECHNICAL ARCHITECTURE ... 18

3.1 PORTLETS .. 18
3.2 CONTENT MANAGEMENT .. 22
3.3 ITA – REUSABLE COMMON SERVICES (RCS) ... 22

3.3.1 E-mail Framework.. 23
3.3.2 Exception Handling .. 24
3.3.3 Logging Framework ... 24
3.3.4 Persistence Framework .. 25
3.3.5 Search Framework ... 26

3.4 SOFTWARE ... 27
3.5 ENVIRONMENTS... 27

3.5.1 Development ... 28
3.5.2 System Testing .. 29
3.5.3 Performance Testing ... 30
3.5.4 Production ... 31

4 DATA ARCHITECTURE .. 32
4.1 ENVIRONMENT... 32
4.2 INSTANCE... 32

APPENDIX A .. 33
MAIN.. 33

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 4 of 40

A – THINKING COLLEGE.. 34
B – ATTENDING COLLEGE ... 35
C – REPAYING LOANS.. 36
D – RETURNING TO SCHOOL.. 37
E – ADD TO BOOKMARKS .. 38
F – MYFSA... 39
G – USER PROFILE ... 40

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 5 of 40

1 Introduction

1.1 Purpose
A portal is an aggregation point for content, functions, and features using web-based
technology with a unifying theme. Portals need to be able to display both unstructured
and structured data. Unstructured data consists of documents found in intranet sites,
Internet sites, document management systems, groupware databases, and network file
systems. Structured data consists of data found in data warehouses, Enterprise
Resource Planning (ERP) systems, legacy business data systems, and other databases.

A portal is a thin architecture layer integrating many different types of applications and
services. As portal tools evolve, additional functions previously provided by separate
applications can be added to its capabilities (e.g., search, personalization, collaboration,
etc.). Additionally, existing tools or software packages are beginning to include more
functionality usually associated with portal tools.

The Federal Student Aid Students and Financial Partners channels portals will bring
together, in one simple, personalized Web page all the information and productivity
tools relevant to FSA's customers, employees, and partners to make informed financial
aid decisions and empower financial partners to assist students. The personalized "front
door" will automatically identify and distribute content relevant to each user. The
portals will integrate with existing FSA web sites (e.g., FAFSA, NSLDS, DLSS, etc.), and
external sites (ELM Net, Meteor, etc.), using the ITA infrastructure. The portals will be
the glue that bonds all of FSA’s web services together providing a uniform starting point
for students and financial partners to access FSA.

The purpose of this document is to provide a high-level overview of the features, design
and functionality of the FSA Portal’s Students Channel. Some of the information
covered in this document is common between both the Students and Financial Partners
Channels. Thus, a reference may be made to both Channels in certain sections of the
document.

1.2 Scope
The scope of this document will present FSA with the framework for building a unified
portal for students, parents, and financial partners to access FSA Financial Aid
information. Release 1 includes the design of the enterprise portal framework with
channel specific views for students and financial partners, the gathering of detailed
requirements for both the students and financial partners channel specific views.
Release 1 will also include the development of the FSA enterprise portal with channel

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 6 of 40

specific views for both Students and Financial Partners to be deployed upon successful
testing and approval. It will also be flexible to address the changing business
environment needs of FSA. The end result of this project will be a long-term business
architecture strategy for the FSA Enterprise Portal.

The Portals release strategy will include:

• Release 1 (4 months after IRB approval)
− Build an enterprise portal infrastructure to enable the integration of re-

engineered modernization systems
− Build Students and Financial Partners views
− Links to FFEL information from student views
− Build link to FAFSA, Direct Loan Servicing, Loan Consolidation and NSLDS for

Students view
− Provide Students with links to .gov and .org neutral sites
− Re-use of common portlet services
− Build search capabilities, internally and externally for both Student and FP views
− Build content management for both Student and FP views
− Create common uniform look and feel across the enterprise portal and sub-views
− Perform usability testing to meet 508 compliance requirements
− Develop on ITA infrastructure
− Determine VDC hardware / software operation costs
− Determine Maintenance costs
− Define standards for integration with Portal
− Define on-going hosting strategy

1.3 Basic Business Needs
FSA’s Internet channel has more than 35 web sites connected to multiple back-end
systems. The FSA websites do not provide for a unifying theme or a consistent common
look and feel across all sites. Students and Financial Partners do not have one single
entrance point to access FSA’s Internet services; they must access multiple URLs to
retrieve financial aid information. FSA web sites need a personalized starting point for
Students and Financial Partners to enter through one "front door" to access a single view
of internally and externally stored content/information, application/services, business
processes, and knowledge assets for every channel.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 7 of 40

Business Problem:

• No single starting point for FSA customers
• No single view of information that can be personalized for Students or Financial

Partners
• No integration across multiple websites and systems for internal and external use
• No uniform common look and feel for FSA web site(s)
• No consistent standards and architecture
• No common customer care component across all sites

1.4 Application Features & Benefits

Benefit Areas Feature Description Notes Release #

Single Point of Entry The portal will allow all
end users to have a
single entry point to
information, resources,
and tools they will need
to perform their job.

 1

Presentation Common look and feel
across all sites.

This does not include
the Schools Channel

1

Personalized Content Some content will be
personalized based upon
the channel. Also, users
can store bookmarks on
their ‘myFSA’ page.

Higher complexity
personalization will
be introduced in later
releases.

1

User Profile The application will store
a user profile that will
allow for any current or
future personalization.

 1

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 8 of 40

News News will be available to
users. The news section
will show current events,
deadlines, training dates,
and other information.
This will provide portal
users with knowledge of
current tasks and
deadlines. The news will
be updated by a member
of FSA via a front-end
user interface.

 1

Survey A survey will be
available to users, so that
they may provide
feedback on the look,
feel, and functionality of
the portal.

 1

Links Links will be provided to
all Federal Student Aid
information for Students.

In future releases, the
content from these
links will be in-house
(not links to other
sites).

1

Search Users will be able to
search the site’s content
and content across other
areas of the Department
of Education.

 1

Login/Registration Users will be able to set
up a ‘MyFSA’ page by
filling out a registration
form, which includes
creating a username and
password for the login
feature.

 1

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 9 of 40

Multi-Language Channel will be
accessible in English and
Spanish

 1

Content Management Content for certain areas
of the portal will be
centrally added. This
will simplify content
creation and distribution.

The first release will
contain simple uses
of this technology.
Future releases could
use advanced
features in this area.

1

Content Aggregation The portal will aggregate
information and
resources to a central
location

 1

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 10 of 40

2 Application Architecture

2.1 Struts
The Struts framework and the portlets (described in section 2.2 Blueprint) provide the
technical functionality of the portal. Struts uses an adaptation of a common design
pattern known as Model View Controller or MVC. (Struts actually uses MVC 2.) The
system is broken down into three pieces, how the information is displayed (the view),
how the information is maintained (the model), and rules and logic that define how the
information is manipulated (the controller). By separating these pieces, it becomes easier
to update any one piece, like changing the way information is displayed, without
affecting the other pieces. The diagram below illustrates the components within Struts.

Struts overview

• Client browser
This is the web browser that is used to reach the Portal. An HTTP request from
the client browser creates an event. The Web container will respond with an
HTTP response.

• Controller
The Controller receives the request from the browser, and makes the decision
where to send the request. With Struts, the Controller is a command design
pattern implemented as a servlet. The struts-config.xml file configures the
Controller.

• Business logic
The business logic updates the state of the model and helps control the flow of

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 11 of 40

the application. With Struts this is done with an Action class as a thin wrapper
to the actual business logic.

• Model state
The model represents the state of the application. The business objects update the
application state. ActionForm bean represents the Model state at a session or
request level, and not at a persistent level. The Java Server Page (JSP) file reads
information from the ActionForm bean using JSP tags.

• View
The view is simply a JSP file. There is no flow logic, no business logic, and no
model information -- just tags. Tags are one of the things that make Struts unique
compared to other frameworks like Velocity.

Note: "Think thin" when extending the Action class. The Action class should control
the flow and not the logic of the application. By placing the business logic in a separate
package or Enterprise JavaBeans (EJB), the design allows for flexibility and reuse.

2.2 Blueprint
The application blueprint is designed to depict the application and all of its integration
points into one view. It is not meant to be a detailed document; rather it shows a logical
representation of the application and its pieces. The illustration below depicts the FSA
Portal application, the different channels (or commonly called views), and its relative
interactions. It can be seen that the Portal consists of three different channels. They are
Schools, Financial Partners, and Students. All three will leverage the same base
architecture and services but will use them in different capacities. The following will
describe the diagram and the many layers and their interactions.

The top of the diagram depicts the portal layer and the different channels. These three
channels target different audiences and thus offer different capabilities and
functionalities. This will be evident in the presentation layer. The presentation, or user
interface, will leverage Apache’s Struts architecture. Struts, seen as the supporting layer
for the User Interface (UI), uses custom tag libraries and configuration files to help
separate UI design from the rest of the application logic. Struts also helps “glue” the
front-end to the logic and controls application flow and session management. Refer to
the Struts section for a more detailed explanation of this architecture.

Below the UI reside the portals portlets. A portlet is a self-contained, functional “view”
of information. It can be easily reused and really are the building blocks for the
application’s functionality. They are more tangible than the Reusable Common Services
(RCS) pieces since they represent visual and tangible functional areas. Whereas RCS
provides services such as database persistence which is invisible to the end user,

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 12 of 40

portlets offer functionality such as registration, searching, headlines, login, calendar, and
feedback. They interact with services in the RCS suite to handle common application
functionality (e.g. error logging and the like). They also interact with the presentation
layer to provide visual information and data.

The Reusable Common Services provide common application services that many
applications can leverage. They are designed to be highly reusable and in the diagram
below they are shown to be connected with the portlets. This is to represent that these
services (RCS) provide standard functionalities to the portlets. RCS is supported and
was developed by ITA. Further information can be found in the Technical Architecture
section of this document.

An Enterprise Application Integration layer is essential to provide data to a wide range
of applications. Both the portlet layer and the RCS layer will leverage the EAI bus.
However, it is important to note that the FSA Portal will NOT be leveraging the EAI bus
to retrieve any information. Release 2 is planned to provide this data integration.

Lastly, the data layer depicts department-wide data sources. The portlets, RCS, and EAI
will utilize databases that encompass large amounts of system data.

Please note that the Schools portal will be using the same general application
architecture. However, the portlets that Schools is using are not current and differ
functionally from those that will be incorporated in the Students and Financial Partners
portals.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 13 of 40

Struts (Apache Framework)

Registration

PORTLETS (JAVA, JSP)
WEB SERVCES

(RCS)

E-mail

Exception
Handling

Logging

Persistence

Search

Login

Search

Calendar

Headlines

Feedback

Personalization

Schools

Portal
(JSP, HTML)

Financial Partners Students

Portal Data

Figure 2.1

2.3 Page Navigation/Flow
See Appendix A for diagrams.

2.4 Audience & Users
The FSA Students Portal is primarily targeted at three groups: Students who are pre-
college (elementary through high school), students who are attending college
(undergraduate and graduate, non-traditional, continuing education, international
students, and adult learners), and students who are no longer in school and have

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 14 of 40

entered repayment. Parents, financial aid administrators and guests are other groups
that are expected to use the Students Portal, although to a lesser extent than the three
primary groups. In addition, FSA’s financial partners are expected to periodically visit
the Students portal, in order to determine what information is accessible to student
borrowers.

2.5 Security Architecture

2.5.1 Purpose
The following standards are the minimum security requirements for the Students
Channel. These will address all aspects of application security and include
authentication and authorization.

2.5.2 Password Policy
The password is an important piece to help identify a user while ensuring
identity. Passwords, in conjunction with user ID’s, are the key to authenticating
users into system(s) and need to be secure especially if sensitive data is being
stored. As a result we must pay attention to this important aspect of an
application.

• All users will create a password

• This password will follow guidelines outlined in Section 2.5.4

2.5.3 Password Privacy
Passwords must remain private to ensure security. The following describe
typical password issues and concerns:

• A password will be entered each time a user wishes to login or their
session timeout has expired.

• The Students portal will not use client side cookies to handle ‘remember
who I am functionality’. This will enforce security by not allowing others
who use the desktop to enter the system. Also, the user can safely use
any computer.

• Passwords will be sent over SSL (secure sockets layer).

• Passwords will be masked by using astericks (***) when entered within a
form.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 15 of 40

2.5.4 Username / Password Format & Content
Passwords can be easily guessed, stolen, or hacked if rigid security policies are
not in place; especially policies around usernames and passwords. Therefore, it
is important that both strings, as a combined ‘key’, have enough uniqueness and
strength to prevent unauthorized entry.

2.5.5 Password Expiration, History & Temporary Passwords
Active passwords that are not frequently changed can impose a security risk. If
passwords are not changed every so often then they risk being lost, stolen, or
compromised. These rules specify the requirements for expiring passwords and
forcing a change.

• Passwords will have an expiration period and the user will be forced to
change their password.

• A user will receive a temporary password via e-mail if they cannot
remember their old one.

• If a temporary password is created that password will expire within a few
days. If a user uses that temporary password to login then it will
immediately expire and the user is forced to change their password.

2.6 Login, Authentication & Sessions
The Students Channel of the FSA Portal will use the login portlet provided by ITA. This
service will be enhanced to meet the requirements of the Students Channel. Please note
that the enterprise portal page (the main entry point for all channels will not have a
login. Only the main page of each channel will contain a login form.

2.6.1 Login
Login for students will consist of a simple username and password combination..
Please note that the first release will not attempt to perform any single sign-on or
seamless login capabilities.

Since the user can choose any username and password they like, they can elect to
use an existing username and password combination (e.g. a login to FMS).
However, if the username is taken then the application will force them to select
another. This will only reduce the number of username/password combinations
a user has to remember and will NOT be used by the application for subsequent
logins. It is also not recommended since the portal application can not guarantee
the security of a users login credentials.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 16 of 40

Single sign-on, which is not currently in place, would be ideal to reduce the
number of username/password combinations a user needs to remember and
give them access to a variety of systems after only logging in once.

2.6.2 Authentication
Authentication will be provided by the login portlet. Users will login via a
username and password once a page is secured with SSL to ensure their
credentials are encrypted. The portlet will match their supplied credentials
against the database. If the user is not a valid user, an error is raised. If the
validation is successful, the user will establish a session and have access to their
personalized content.

2.6.3 Session Management
Struts will handle application state via the ActionForm class. Each application
will subclass the ActionForm class thus allowing flexibility to always update
(“set”) or receive (“get”) the application state. WebSphere will handle HTTP
session management by establishing a session ID (a unique ID to match the
session with the requesting client). This session ID will be stored in memory on
the application server.

2.7 Multi-Language
The FSA student portal has the need for multi-lingual capabilities. These languages will
include English and Spanish with English being the default language. The approach to
handling multi-language will consist of the following:

Java uses the concept of properties files to store static nave/value pairs. There must be a
separate file for each supported language and it must conform to the following naming
convention:

• <filename>_<language code>.properties

See the example below:

• Ex: resources_es.properties

It is also recommended to have two files for the default language. In this case the
default language is English, thus there should be a properties file entitled:

• <filename>_<language code>.properties [default with language code]

See the example below:

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 17 of 40

• resources_en.properties

and one with no underscore and language code:

• <filename>.properties [default without language code]

See the example below:

• resources.properties

This last example will always be used by the application if the set locale cannot be linked
to a resource properties file.

Struts provides the flexibility to automatically detect the browser’s locale. This set locale
is used to “point” the application to the correct properties file. Therefore all static text
will be stored in this property file and adjusting the locale in either the browser or via a
button on the portal will change the locale session variable resulting in a page “refresh”
with the new language displayed.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 18 of 40

3 Technical Architecture

3.1 Portlets
The FSA Portal site is composed of a horizontal portal, implemented as a frameset,
linking to a set of individual vertical portlet action objects. Each portlet in a horizontal
portal is generally a separate MVC (Model-View-Controller) application, loosely linked
to the overall portal by ancillary requirements, such as security and visual integration
(common look and feel). For productivity purposes it is desirable to partition the work
so that a team of developers can work on portlets independently. Key to this is to have a
framework available that provides a common set of MVC facilities, including:

• A navigation framework, which standardizes the mechanism used to route
request processors and the target of those requests (JSP or HTML). In Struts
the request processors are termed Actions.

• JSP Tag Libraries, which simplify the development of the portlet JSPs, since
they reduce the amount of JSP scripting that needs to be provided. Struts
provides a number of Custom Tag libraries. For example, the tag library
eases specification of HTML forms by providing a set of message display
facilities, buttons, and other forms-based visual controls. Portlet developers
may further extend the set of tags to provide enhanced functionality as well
as common look and feel between portlets.

• A simple means of binding portlet JSP parameters to Actions by means of
some Java Bean having a set of properties, each one corresponding to an
HTML form or query parameter. In Struts the parameter-binding object is
termed a Form. In addition, Struts provides a standardized validation
mechanism for HTML form parameters, very useful in forms intensive
portlets.

Using Struts, the portlet developer’s role is thus greatly simplified to providing Struts
Actions, Forms, JSPs and JSP tags and integrating them by developing some additional
Java Beans. All the portlet JSPs will be written using a combination of HTML, Struts
tags, and FSA custom tags.

The Integrated Technical Architecture (ITA) team will develop the following 7
portlets for the FSA Portal:

• Login

• Search

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 19 of 40

• Personalization

• Headlines

• Feedback

• Calendar

• Registration

However, the Students Portal, for Release 1 will only be using a subset of these
portlets. The ones being used for Release 1 are described in more detail below.

• Login

The login portlet provides standard login functionality using a username
and password. The username supplied via a form is matched against the
appropriate database to ensure that the username is a valid one. The
username supplied via a form is used to authenticate a user by also
making sure the password associated with that username matches the
one supplied on the login form. Passwords are secure passing over
internet (e.g. SSL). For example SSL will be used for the login page to
ensure these credentials are encrypted. If a user forgets their password
and wishes to have their password e-mailed to them then they can invoke
(via link, button) an automatic mailing to with a new, temporary
password (automatically generated). The user must supply a username
to do this and their e-mail address is stored via their profile. The user is
forced to change this password at the next login. The e-mail containing
the temporary password will state that if this action was not invoked by
you then please contact us via some predetermined way. All temporary
passwords must expire at the next login or after a certain time period of
inactivity. When entering a username there is no case-sensitive
validation. Thus the username is not case-sensitive: jSmith is equal to
jsmith. Password policy information (text) is stored and displayed to the
user when both logging in and registering. A notification/ message will
be transferred when too many login attempts are made within a certain
time period. If a username is forgotten, the user may fill in their e-mail
(via a web form) and invoke an action to e-mail the username to that e-
mail address.

• Search

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 20 of 40

The search portlet provides searching capabilities across many sources by
providing general and advanced search options using Autonomy. Users
can search across the portal pages to find relative information within the
portal. Users can search across any or all Dept. of Ed. Sites. Therefore,
they have the ability to choose (checkbox) what sites they wish to search
across. Sites we'll need to search (ed.gov, FAFSA, Loan Consolidation,
Direct Loans, NSLDS, IFAP, *.ed.gov). Users can have the ability to
search any of Dept. of Ed's databases. Search results will include a
percentage of how close the results are to the search criteria they
provided. The search engine will provide results with similar options.
This would consist of pages that are contained within that URL. Search
results will supply a list of related areas based upon the users search
criteria.

Ex: a user searches for space….the browser returns related searches for
space pictures, space shuttle, space station, etc. If a user spells a word
incorrectly the search engine will signal correct spellings (e.g. did you
mean <>?). User can use an advanced search to help find the information
they are looking for. This would include a form specifying different
criteria.

• Registration

The registration portlet captures user–specific information to allow for
personalization. This information includes, but is not limited to the
following:

o User's first name.

o Who last changed that user's profile.

o The status of the user's account (disabled, enabled).

o The date the user opened an account.

o The date the user's profile was last changed.

o The date the user's profile was created.

o The state where that user lives.

o The user’s level of education.

o User's interest.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 21 of 40

o State of school the user attends.

• Personalization

The personalization portlet provides general personalization capabilities
(i.e. – bookmarking). Users have two ways of saving bookmarks to their
'my' page. If the user clicks a control area (link, button, etc.) on the page
they want bookmarked (within the Students Portal), they are prompted
with a title and URL field. The user may edit the title field only and then
submit. Once the user has submitted, the new link appears on their
'myFSA' page. A user may also add any *.edu, *.gov, or *.org bookmark
by going to their profile and filling out the title and URL fields in the
Bookmark section.

Users are able to see their current bookmarks and can edit/update and
save these bookmarks. The user gets a message when the update is
successfully completed. Users can delete a bookmark (only the ones they
have added) via a control mechanism (button/link). Users can toggle
(on/off) via a checkmark whether they want to see a provided link.

• Headlines

The headlines portlet provides messages/headlines (described as
messages below) from the database to the user. The user sees enterprise-
wide news/headlines that are stored in a database. Users see news based
upon the portal channel (students, FP, schools) they are visiting. For
instance, if someone is viewing the students channel, the news and
headlines will be geared toward students rather than toward the
enterprise.

An administrator will be able to update or create new messages via a
web-based user interface. If the administrator is creating personalized
messages, (s)he can relate it to certain criteria (e.g. state, age, etc). If the
news message is not personalized, the news message is simply entered
and then published to the site.

 When entered, headlines are given a start and end date. This means that
the portlet will know when headlines are old and should expire. There
will always be at least one headline that will not expire.

• Feedback

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 22 of 40

The feedback portlet provides the user with a feedback (or survey) form
to solicit feedback on the site from the user. Users when choosing to
provide feedback will be taken to a custom questionnaire. This
questionnaire can be customized (extended/contracted) by number of
questions, question, and possible answers. There are free text fields in
this case. The results, upon submission, will be mailed to a specified
inbox and stored in the system's DB. A person(s) from the department
will be able to modify the current live questionnaire. This will alter the
current feedback area and new feedback can be obtained. Results will
still be mailed to a specific e-mail address. Upon feedback submission
the user will receive a confirmation page.

3.2 Content Management
The content management solution for Release 1 will be simplified due to the limited
amount of content and frequency the content will be updated. A front-end will be built
to provide a data entry and edit tool for all news and survey information.

3.3 ITA – Reusable Common Services (RCS)
The Integrated Technical Architecture (ITA) provides the Department of Education’s
Federal Student Aid (FSA) program with a more robust core infrastructure for its
application and production efforts. In addition to providing FSA’s application teams
with a core set of products and Subject Matter Expert (SME) support, ITA provides a set
of Java 2 Enterprise Edition (J2EE) technical architecture Reusable Common Services
(RCS). These common services have been identified to provide significant value to FSA
web development efforts.

The RCS services provide FSA with a core set of Java services that may be used across
the enterprise to handle core architectural functions such as exception handling, logging,
and e-mail. Future releases of the ITA will provide additional RCS services and
enhancements.

From its inception, one of ITA’s guiding modernization goals has been to create a
reusable middleware architecture that could be leveraged by current and future
modernization applications. The ITA R2.0 RCS services are the first ITA deployed
components of a reusable production-ready middleware architecture.

The following ITA Reusable Common Services will be utilized in the FSA Portal
application:

• E-mail Framework

• Exception Handling Framework

• Logging Framework

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 23 of 40

• Persistence Framework

• Search Framework

The RCS services are built based on an open technology and J2EE architecture. The ITA
team leveraged previous Accenture and industry experience to design and develop a
robust set of core technical architecture common services that specifically address FSA
enterprise application requirements.

The core of the RCS services consists of the exception handling and logging frameworks.
The other frameworks use these services to provide standard and consistent exception
handling and logging.

3.3.1 E-mail Framework
The e-mail framework provides FSA with a common way to generate e-mail
messages from applications. The e-mail framework uses Sun Microsystems’
JavaMail API 1.2, which provides a standard interface for Java programs to send
e-mails to a Simple Mail Transport Protocol (SMTP) Mail server.

The e-mail framework may be used by FSA application teams to standardize e-
mail messaging and replace existing methods of sending e-mail. (The ITA R1.0
applications currently send e-mail through two methods – one uses JavaMail and
the other uses an Oracle database, UNIX shells scripts, and a sendmail operating
system utility.)

The ITA e-mail framework provides the following features:

• Dynamically set all elements of an e-mail ("To" address, "From" address,
subject, etc.)

• Send attachments to e-mail

• Set multiple e-mail addresses within the "To" address, "From" address,
and "Reply To" address

• Dynamically set the SMTP Server

• Verify e-mail parameters meet minimum standards for delivery.

• Send a real time e-mail to a SMTP Server

• Process batch e-mails and send to a SMTP Server at a specified time

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 24 of 40

3.3.2 Exception Handling
An exception is a code or language construct that indicates when an unusual or
unexpected error condition occurs in an application. Examples of exceptions are
hardware, network, I/O, or memory problems. If an exception is “handled” in
code, it can be dealt with gracefully and will not necessarily have to cause
program termination. Exception handling provides a mechanism for writing
robust, resilient code that is capable of dealing with the unexpected.

The exception handling framework will help standardize and simplify exception
handling for FSA’s application teams. The standardized exception handling will
also help reduce the possibility of uncaught exception scenarios.

The exception handling framework provides the following general services and
components:

• Guidelines for identification and responding to exceptions

• Guidelines for throwing and catching exceptions

• Base exception classes

• Default last-resort exception handlers

• Simple interface for integration of logging exceptions

• A generic exception class that must be thrown by all components in the
application. It contains a status code that represents the type of
exception. This generic exception can be extended for specific errors

An exception factory class that will be used to create exceptions and will
automatically assign a unique id. This unique id will be displayed to the user if
necessary in order to uniquely identify the associated log and therefore all the
associated information.

3.3.3 Logging Framework
The logging framework enables users to track and identify the source of errors.
The logging framework uses a routine to determine the originating class and
method for the logging call. This provides complete and descriptive logs that
enable operations personnel to view the logs and quickly determine where the
instance or error occurred and possibly what caused it. Logs are not tied to
exceptions only; they are customized to record access and other useful
information in troubleshooting and analyzing an application.

Users can define handlers to be global or assign them to specific, named loggers.
Loggers can be associated to both the global handler set and to specific handlers.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 25 of 40

The formatting of the message only happens at the handler. Both loggers and
handlers can filter messages based on some function, and by the level of the
message.

A set of appropriate handlers will be defined for the given application. This
could mean Error or higher goes to a specific handler and Info and higher goes to
another. In general, these handlers will be global. Application code should log
to a named logger appropriate to its subsystem. Finer control of log levels is set
within the handler. However, further filtering will require the creation of a
custom filter that is attached to the handler.

The logging framework provides the following features:

• Custom logging

• Filtering messages by level

• Integration with the exception handling framework

• Channel functionality to provide the ability to listen to multiple
applications on one server

3.3.4 Persistence Framework
The persistence framework encapsulates the behavior needed to make objects
persistent. Specifically, a persistence framework reads, writes, and deletes
objects to/from permanent storage. The persistence provides full encapsulation
of the persistence mechanism. Application developers can send a save, delete or
retrieve message to the persistence framework and the framework will handle
the rest of the interaction with the database.

The persistence framework also provides the ability to implement persistence
behavior on multiple objects concurrently. The framework supports saving,
deleting, or retrieving many objects at once depending upon a specific criterion.

The persistence layer can implement transactional behavior on objects. A
transaction is defined as a combination of actions implemented on several objects
concurrently. An example is adding an object to a database and deleting another
object from another database and being able to rollback the entire transaction if
an error occurred.

The persistence layer uses pooling resources available to help maintain efficient
use of the database. If a single client has the ability to request every record from
a datasource, then that client may be able to consume almost all resources of that

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 26 of 40

datasource. The persistence framework uses a controlled approach that does not
allow runaway use of a resource.

The persistence layer can dynamically run stored procedures on the database or
submit SQL directly from the application. The persistence framework includes
application supplied data classes that allow the framework to know the schema
of the database to which it is connected.

3.3.5 Search Framework
The search framework simplifies, standardizes, and improves the use of the
Autonomy search engine. This framework complies with J2EE standards instead
of using CGI as in the current search engine interface. The framework consists of
a search classes that provides a common way to access the Autonomy HTTP API
and utilize its features.

The search wrapper implements the following Autonomy features:

• Query search engine

• Natural Language or "Fuzzy" query search engine

• Display search results

• Suggest additional search results

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 27 of 40

3.4 Software
Function Product Version Environment

Operating System Sun Solaris v. 2.6 All

HTTP Server IBM HTTP Server v. 1.3.12.2 All

Java Application Server WebSphere Application
Server Advanced Edition

v. 3.5.3 All

Search Engine Autonomy Knowledge
Server

v. 2.1 All

Database Oracle 8i v. 8.1.6 All

Java Development Tool Visual Age for Java
Enterprise Edition

v. 3.5.3 Dev Only

Configuration
Management and
Version Control Tool

Rational ClearCase v. 4.1 All

Defect and Change
Tracking Tool

Rational ClearQuest v. 2001A.04.00 All

Content Management Interwoven TeamSite v. 5.0.1 All

Performance Testing
Tool

Mercury LoadRunner v. 7.0 Performance
Only

3.5 Environments
Four environments will be used in the life cycle of the FSA Portal Students and Financial
Partners Channels.

• Development

• Testing

• Performance Testing

• Production

The following diagrams are logical representations of each of these four environments.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 28 of 40

3.5.1 Development

Figure 3.1 - Development Environment (Logical Diagram)

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 29 of 40

3.5.2 System Testing

Figure 3.2 - System Testing Environment (Logical Diagram)

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 30 of 40

3.5.3 Performance Testing

Figure 3.3 – Performance Testing Environment (Logical Diagram)

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 31 of 40

3.5.4 Production

Figure 3.4 - Production Environment (Logical Diagram)

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 32 of 40

4 Data Architecture

4.1 Environment
The infrastructure for the data will consist of an Oracle database.

4.2 Instance
The instance for the Students Portal will contain data for the following areas:

• User Profiles

This will encompass all of the user registration information. For example data
would include username, password, title, etc. This will be stored within a single
table with many columns for each of the profile attributes.

• Headlines

Headlines will contain information relating to a particular headline. This will
include the headline text, title, start date, end date, category, audience, etc.
Headlines information will be fed via a front-end user interface thus making the
updating process easier and intuitive.

• Personalization

This will encompass all of the personalized data for users. Personalization in
Release 1 includes book-marking capabilities for each user. Thus, this will hold
any information relating to a user’s personal bookmarks and bookmark settings.

• Feedback

Feedback includes survey questions and answers. This will include the original
survey questions and choice of answers and all results from the portal’s users.
Survey information will be fed via a front-end user interface thus making the
updating process easier and intuitive.

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 33 of 40

Appendix A

Main

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 34 of 40

A – Thinking College

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 35 of 40

B – Attending College

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 36 of 40

C – Repaying Loans

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 37 of 40

D – Returning to School

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 38 of 40

E – Add to Bookmarks

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 39 of 40

F – myFSA

US Department of Education

Federal Student Aid

FSA Modernization Partner

FSA Portals, Release 1

Students

Preliminary Design Document

Version 1.1 Task Order #79 Page 40 of 40

G – User Profile

